Machine Remaining Useful Life Prediction Based on Adaptive Neuro-Fuzzy and High-Order Particle Filtering

نویسندگان

  • Chaochao Chen
  • George Vachtsevanos
  • Marcos E. Orchard
چکیده

Machine remaining useful life (RUL) prediction is a key part of Condition-Based Maintenance (CBM), which provides the time evolution of the fault indicator so that maintenance can be performed to avoid catastrophic failures. This paper proposes a new RUL prediction method based on adaptive neuro-fuzzy inference systems (ANFIS) and high-order particle filtering, which predicts the time evolution of the fault indicator and computes the probability density function (pdf) of RUL. The ANFIS is trained and integrated in a high-order particle filter to describe the fault propagation process; the high-order particle filter uses real-time data to update the current state estimates so as to improve the prediction accuracy. The performance of the proposed method is evaluated via the real-world data from a seeded fault test for a UH-60 helicopter planetary gear plate. The results show that it outperforms the conventional ANFIS predictor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine Condition Prediction Based on Adaptive Neuro-Fuzzy and High-Order Particle Filtering

—Machine prognosis is a significant part of Condition-Based Maintenance (CBM) and intends to monitor and track the time evolution of the fault so that maintenance can be performed or the task be terminated to avoid a catastrophic failure. A new prognostic method is developed in this paper using adaptive neuro-fuzzy inference systems (ANFIS) and high-order particle filtering. The ANFIS is traine...

متن کامل

Prediction of Seismic Wave Intensity Generated by Bench Blasting Using Intelligence Committee Machines

In large open pit mines prediction of Peak Particle Velocity (PPV) provides useful information for safe blasting. At Sungun Copper Mine (SCM), some unstable rock slopes facing to valuable industrial facilities are both expose to high intensity daily blasting vibrations, threatening their safty. So, controlling PPV by developing accurate predictors is essential. Hence, this study proposes improv...

متن کامل

Adaptive Online Traffic Flow Prediction Using Aggregated Neuro Fuzzy Approach

Short term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems. Although various methodologies have been applied to forecast traffic parameters, several researchers have showed that compared with the individual methods, hybrid methods provide more accurate results . These results made the hybrid tools and approaches a more common method for ...

متن کامل

ADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE

The  tunnel  boring  machine  (TBM)  penetration  rate  estimation  is  one  of  the  crucial  and complex  tasks  encountered  frequently  to  excavate  the  mechanical  tunnels.  Estimating  the machine  penetration  rate  may  reduce  the  risks  related  to  high  capital  costs  typical  for excavation  operation.  Thus  establishing  a  relationship  between  rock  properties  and  TBM pe...

متن کامل

Comparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model

Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010